Multisensory Integration in Spatial Processing: How Brain Computes Positional Coordinates

Budding Forensic Expert
0
Multisensory Integration in Spatial Processing

Multisensory Integration in Spatial Processing

Journal: The Forensic Wizards
Volume: 2
Published Date: October 23, 2024
Author: Milik Ahmed (Budding Forensic Expert)
DOI

Abstract

Spatial coordinate calculation in the human brain involves the integration of multiple sensory systems, including visual, vestibular, and proprioceptive inputs, each providing essential information about an individual's orientation and movement in space. This process is governed by key brain regions, such as the hippocampus, entorhinal cortex, posterior parietal cortex (PPC), and cerebellum, which work in a highly coordinated manner to form spatial maps and control motor function. In this review, we will comprehensively examine how the brain computes spatial coordinates, the interaction of multisensory inputs, and the role of neural circuits like place and grid cells. We further delve into the mechanisms by which these systems contribute to spatial awareness, navigation, and motor coordination.

Download PDF

Download (PDF) Preview

References

1. Howard, I. P., & Rogers, B. J. (2012). Perceiving in depth, Volume 3: Other mechanisms of depth perception. Oxford University Press.
2. Gonzalez, R. C., & Woods, R. E. (2017). Digital image processing. Pearson.
3. Hubel, D. H., & Wiesel, T. N. (2005). Brain and visual perception: The story of a 25-year collaboration. Oxford University Press.
4. Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20-25. https://doi.org/10.1016/0166-2236(92)90344-8
5. Kravitz, D. J., Saleem, K. S., Baker, C. I., & Mishkin, M. (2011). A new neural framework for visual perception. Nature Reviews Neuroscience, 12(3), 217-230. https://doi.org/10.1038/nrn3000
6. Crapse, T. B., & Sommer, M. A. (2008). Corollary discharge circuits in the primate brain. Current Opinion in Neurobiology, 18(6), 552-557. https://doi.org/10.1016/j.conb.2008.09.017
7. Huk, A. C., & Shadlen, M. N. (2011). Neural activity in the lateral intraparietal area reflects the influence of sensory evidence on decision making. Nature Neuroscience, 14(6), 846-854. https://doi.org/10.1038/nn.2824
8. Angelaki, D. E., & Cullen, K. E. (2008). Vestibular system: The many facets of a multimodal sense. Annual Review of Neuroscience, 31(1), 125-150. https://doi.org/10.1146/annurev.neuro.31.060407.125555
9. Laurens, J., & Angelaki, D. E. (2017). The functional significance of velocity storage and its dependence on gravity. Experimental Brain Research, 235(6), 1815-1827. https://doi.org/10.1007/s00221-017-4903-9
10. Yoder, R. M., & Taube, J. S. (2014). The vestibular system: A new player in spatial memory. Nature Reviews Neuroscience, 15(1), 53-60. https://doi.org/10.1038/nrn3731
11. Cullen, K. E. (2016). The vestibular system: A new model of sensorimotor integration. Nature Reviews Neuroscience, 17(5), 266-279. https://doi.org/10.1038/nrn.2016.30
12. Walker, M. F., et al. (2009). Cerebellar modulation of the vestibulo-ocular reflex in humans. Journal of Neurophysiology, 101(3), 1212-1220. https://doi.org/10.1152/jn.91154.2008
13. Shadmehr, R., et al. (2010). Prediction and the sensory consequences of motor commands. Trends in Cognitive Sciences, 14(1), 15-22. https://doi.org/10.1016/j.tics.2009.11.002
14. Proske, U., & Gandevia, S. C. (2012). The proprioceptive senses: Their roles in signaling body shape, body position and movement. Progress in Neurobiology, 98(1), 1-19. https://doi.org/10.1016/j.pneurobio.2012.05.003
15. Blouin, J., et al. (2011). Proprioceptive input in the control of posture. Journal of Neurophysiology, 106(5), 2157-2167. https://doi.org/10.1152/jn.00129.2011
16. Scott, S. H. (2012). The computational and neural basis of voluntary motor control and its applications. Nature Reviews Neuroscience, 13(6), 418-429. https://doi.org/10.1038/nrn3175
17. Gentilucci, M., et al. (2014). The role of the posterior parietal cortex in spatial processing and motor planning. Neuroscience & Biobehavioral Reviews, 46(1), 138-151. https://doi.org/10.1016/j.neubiorev.2014.06.008
18. Wolpert, D. M., et al. (2011). Predictive motor control in the brain. Nature Reviews Neuroscience, 12(9), 657-671. https://doi.org/10.1038/nrn3092
19. O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Journal of Physiology, 197(3), 25P. https://doi.org/10.1113/jphysiol.1971.sp009620
20. Moser, M. B., et al. (2017). Place and grid cells: A comparative analysis. Nature Reviews Neuroscience, 18(9), 617-634. https://doi.org/10.1038/nrn.2017.91
21. Eichenbaum, H. (2017). On the integration of space, time, and memory. Hippocampus, 27(2), 112-115. https://doi.org/10.1002/hipo.22612
22. Hafting, T., et al. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801-806. https://doi.org/10.1038/nature03721
23. Bush, D., et al. (2015). The role of grid cells in the representation of space. Nature Reviews Neuroscience, 16(3), 158-172. https://doi.org/10.1038/nrn2016
24. Moser, M. B., & Moser, E. I. (2017). The hippocampus and spatial navigation: A review. Frontiers in Behavioral Neuroscience, 11, 37. https://doi.org/10.3389/fnbeh.2017.00037
25. Nitz, D. A. (2009). Hippocampal place cells and the formation of spatial memory. Trends in Cognitive Sciences, 13(4), 192-194. https://doi.org/10.1016/j.tics.2009.01.002
26. Rowland, D. C., et al. (2016). The entorhinal cortex: A hub for integration of spatial and non-spatial information. Nature Reviews Neuroscience, 17(3), 181-192. https://doi.org/10.1038/nrn.2016.203
27. Sreenivasan, K. K., & Fiete, I. R. (2011). Grid cells generate an analog signal of distance traveled. Nature, 478(7369), 462-465. https://doi.org/10.1038/nature10552
28. Andersen, R. A., & Cui, H. (2014). Intention, action, and decision in the parietal lobe. Nature Reviews Neuroscience, 15(12), 716-727. https://doi.org/10.1038/nrn3865
29. Vallar, G., & Perani, D. (2016). The anatomy of spatial neglect. Neuroscience & Biobehavioral Reviews, 62, 197-208. https://doi.org/10.1016/j.neubiorev.2015.11.004
30. Colby, C. L., & Goldberg, M. E. (1999). Space and attention in the parietal cortex using neurophysiology to help understand cognitive functions. Nature Reviews Neuroscience, 1(1), 38-48. https://doi.org/10.1038/35039011
31. Miall, R. C., et al. (2017). Cerebellar contributions to sensorimotor integration. Neurobiology of Learning and Memory, 143, 17-23. https://doi.org/10.1016/j.nlm.2017.05.006
32. Dum, R. P., & Strick, P. L. (2003). An uncertainty principle in motor control. Nature, 423(6942), 55-59. https://doi.org/10.1038/nature01582
33. Ito, M. (2013). Error detection and representation of motor commands in the cerebellum. Nature Reviews Neuroscience, 14(2), 108-124. https://doi.org/10.1038/nrn3406
34. Rochefort, C., Lefort, J. M., & Rondi-Reig, L. (2011). The cerebellum: A new key structure in the navigation system. Frontiers in Neural Circuits, 5, 1-12. https://doi.org/10.3389/fncir.2011.00011

Details

DOI
DOI

Resource type
Journal article

Publisher
The Forensic Wizards

Published in
The Forensic Wizards, 2, 2024.

Languages
English

Rights

Creative Commons License
Creative Commons Attribution 4.0 International

Citation

Ahmed, M. (2024). Multisensory Integration in Spatial Processing: How Brain Computes Positional Coordinates. The Forensic Wizards, 2. https://doi.org/10.5281/zenodo.13983999

Style
APA

Tags

Post a Comment

0Comments

Post a Comment (0)